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ABSTRACT 

This paper presents an efficient and simple algorithm to 
compute the inverse of a fourth order positive definite 
symmetric matrix.  In GPS related algorithms (whether 
iterative or non-iterative), the computations of user 
position or velocity require determination of the inverse 
of such 4x4 symmetric matrices.   

The standard Gaussian elimination technique based on LU 
decomposition technique does not exploit the advantage 
of matrix symmetry. The approach described here 
involves a single step LDLT decomposition [Golub 1996] 
to obtain a block diagonal matrix with two blocks. The 
blocks will be of the size 1x1 and 3x3. The inverse of the 
first block is obvious, where as the inverse of the second 
block may be computed using the classical formula 
Adj(G)/ det(G). Pivotation can be performed efficiently, 
again by exploiting the symmetry. This algorithm requires 
considerably lesser floating-point operations than the 
standard algorithms. 
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INTRODUCTION 

Fundamental to GPS based navigation are the pseudo-
range and delta-range equations [Kaplan, 1996]. Receiver 
position, receiver velocity, receiver clock parameters 
(clock bias and clock drift) are obtained by solving these 
equations. 

Let (x, y, z) denote the receiver position vector when it 
receives the GPS signals from a satellite Sk. Let  (xk, yk, 
zk) denote the position vector of Sk at the instance of 
signal broadcast, in the ECEF coordinate system [Kaplan] 
Let b be the receiver clock bias. The pseudo-range ρρρρk 
corresponding to the satellite Sk is given by 

 

where, c is the velocity of light. 
 
Similarly let (u, v, w) and (uk, vk, wk) denote the receiver 
velocity vector and the velocity of Sk respectively 
represented in ECEF coordinate system. Let d denote the 
receiver clock drift rate. The pseudo-delta-range δρδρδρδρk are 
given by  
  

 
The input quantities to any navigation algorithm are the 
pseudo-ranges, the pseudo-delta-ranges, the satellite 
positions and the satellite velocities. The receiver 
position, the receiver velocity, the clock bias and the 
clock drift are the unknowns to be estimated. At least four 
pseudo-range and pseudo-delta-range equations from 
different satellites are required to determine these 
unknowns. 
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However, most of the GPS receivers, track more than four 
satellites at a time, for better accuracy and reliability (e. g. 
Receiver Autonomous Integrity Monitoring [Young, 
1986] requires at least five satellite measurements).  

Redundant satellite measurements give rise to an over 
determined system of equations, where the number of 
unknowns is less than the number of equations. In such a 
situation, least square estimates are sought after. There 
exist iterative techniques based on Newton-Raphson 
method and also non-iterative techniques based on 
Bancroft�s method [Strang, 1997] which are used to give 
least square solutions. While attempting to obtain the least 
square solution, by any of the above mentioned methods, 
one comes across an over determined linear system of 
equations of the form:  
 

AX = b,                                                             (3) 

where, A is n x 4 matrix with n > 4, X is 4 x 1  vector and 
b is n x 1 vector. 

The least square estimate of the above equation is given 
by  

 
X = S-1AT(b)                                                      (4) 
 
where, S = AT A is 4 x 4 symmetric matrix. Often 

the matrix A happens to be the Geometry Matrix G (i.e., 
Jacobean of the nonlinear pseudo-range equations 1).  

The accuracy of the computed receiver position and 
velocity depends on two factors: measurement accuracy 
and satellite geometry. The various DOP values (Dilution 
Of Precision) determine the extent of inaccuracy caused 
by the satellite geometry in the receiver position and 
velocity. These DOP values are obtained by computing 
inverse of S=GTG. 

Thus the computation of the inverse of such 4x4 
symmetric positive definite matrices is necessary.   

A standard practice to compute the inverse of a general 
square matrix is the Gaussian elimination technique based 
on LU [Golub, 1996] decomposition. However, when the 
matrix is symmetric, computational effort will be much 
less if LDLT [Golub, 1996] decomposition technique is 
employed.  

The approach presented in this paper, uses LDLT 
technique and the classical formula of inverse  

 
inv(M) = adj(M) / det(M)                                 (5) 

This approach results in an algorithm that uses 
considerably less floating-point operations. Also 
symmetry of the matrix is exploited to reduce data 
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memory requirement. A pivotation technique presented in 
this paper requires only 3 swaps. 

The mathematical details of the algorithm are explained in 
the next section. In the appendix a MATLAB function 
implementing the algorithm is presented.  

ALGORITHM DESCRIPTION 

 The algorithm is explained in this section. It involves five 
steps. The algorithm is presented as a series of matrix 
transformations to emphasize the theory. Implementation 
details are presented in the appendix.  

Consider Eq  (3). Let S=AT A be represented by 
 

The columns of A are assumed to be linearly independent 
(this is the case when more than four distinct satellite 
measurements are used). 

With this assumption and from the fact that S=ATA, the 
matrix S has the following properties 

• S is symmetric and positive definite. 
• The determinant of S is positive. 
• All diagonal elements of S are positive. 

 
Step1: Diagonal Pivotation 

Diagonal pivotation is employed here to prevent division 
by small numbers. 

First, the largest diagonal member of S is identified. If Skk 
is the largest diagonal element of matrix S, then swap 1st 
row with kth row and 1st column with the kth column of 
matrix S. The symmetry is preserved after these 
operations. These operations can be represented as 
multiplication with the permutation matrices. Let Pk 
represent the permutation matrix that swaps kth row and 
the 1st row. 
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The resulting matrix R, is related to S as given below, 
 

R = Pk S Pk
T                                     (8) 

 
Step2: Block Diagonalization by Gaussian Elimination 
Technique  

 
The matrix R defined in Eq no (8) is block diagonalized 
by carrying out elementary row and column operations. 
For this, consider the following lower triangular matrix L. 

 
Here, rj = - Sj1 / S11, for j = 2,3 and 4. 
 
Let B = LRLT                        (10) 

 
Now the matrix B will be of the form 

 
Step3:  3x3 Block Inversion 
 
The above B matrix is a symmetric block diagonal matrix 
of the form 
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where the block  0 is [ 0, 0, 0 ] and the block B22 is 
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Clearly the inverse of the block diagonal matrix is given 
by 
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Here, the inverse of the 3x3 symmetric matrix B22 needs 
to be computed. To compute B22

-1 one can use the 
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following classical formula while taking the advantage of 
the symmetry of B22. 

 
B22

-1 = adj (B22)/ det (B22)                               (15) 
 

Instead of using Eq no (15), the inverse of B22 can be 
computed by techniques explained in steps 2 and 3. The 
matrix B22 can be block diagonalized into 1x1 and 2x2 
matrices and then the Eq no 15 can be used to find the 
inverse of 2x2-block matrix. By doing this one can save 
several floating-point multiplication operations at the cost 
of one extra division. 

 
Step4:   Reverse Transformation 
 

This step finds R-1 from B-1. 
From Eq no (10) i.e., B = L R LT. 
 

 R-1  = LT B-1 L 
 

Step 5: Back Pivotation  
 
From eq no (8) i.e., R = Pk S Pk

T.  
 
     S-1  = Pk

T R-1 Pk   
 
The above steps of finding the inverse of S can be 
summarized by the equation given below 
  
S-1= Pk

T LT B-1 L -1 Pk  

CONCLUSION 
 
Comparison of computation of inverse of a 4x4 
symmetrical matrix, based on general inverse routines and 
the algorithm described here is given below. 

Existing 
Methods 
(Typical) 

Proposed  
Methods 

(Implemented in 
the appendix) 

METHODS 
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Addition 38 40 20 27 
Subtraction 24 - 6 1 
Multiplication 84 52 42 37 
Division 4 4 2 3 
Total  150 96 70 68 

The algorithm is implemented on Analog Devices 
ADSP2189M fixed point processor. The input data to the 
processor is in IEEE floating-point format. A chart 
indicating the number of processor cycles, total number of 
64



program memory words and data memory words is given 
below. 
 

Processor 
Cycles 

Program 
Memory Words 

Data Memory 
Words 

23,782 407 125 

APPENDIX 
 
%======================================== 
% IMPLEMENTATION OF THE ALGORITHM AS A 
% MATLAB FUNCTION 
%======================================== 
function S = sym4inv ( S ); 
%  Step1: Diagonal Pivotation 
max = S(1, 1); 
for j = 2 : 4 
 k = 1;  
 temp = S(j, j); 
 if temp > max 
        max = temp; 
        k = j; 
    end 
end 
 
if max < 1.0e-9  

fprintf ('WARNING:Division by small number); 
end    
if k ~= 1 

for  i  =  2 : 4 
        if  i  <  k 
            temp = S(1, i); 
            S(1, i) = S(i, k); 

 S(i, k) = temp; 
        end 

       if i > k 
            temp = S(1, i); 
            S(1, i)= S(i, k); 

           S(i, k) = temp; 
        end 
    end 
    temp = S(1, 1); 
    S(1, 1) = S(k, k); 
   S(k, k) = temp; 
end 
%------------------------------------------------------------------- 
% Step 2: Block Diagonalization by Gaussian Elimination 
% Technique. 
%------------------------------------------------------------------- 
S (1, 1) = 1 / S(1, 1); 
for  i = 2 : 4 
    r( i ) = -S(1, i) * S(1, 1); 
     for j = i : 4 
            S(i, j) = S(i, j) + r( i )* S(1, j); 
   end 
end 
%------------------------------------------------------------------- 
19
%  Step3:  3x3 Block Inversion  
%------------------------------------------------------------------ 
b(1, 1) = S(2, 2); b(2, 2) = S(3, 3); b(3, 3) = S(4, 4); 
b(1, 2) = S(2, 3); b(1, 3) = S(2, 4); b(2, 3) = S(3, 4); 
b = inv3x3(b); 
S(2, 2) = b(1, 1); S(3, 3) = b(2, 2); S(4, 4) = b(3, 3); 
S(2, 3) = b(1, 2); S(2, 4) = b(1, 3); S(3, 4) = b(2, 3); 
%------------------------------------------------------------------- 
% Step 4: Reverse Transformation: 
%------------------------------------------------------------------- 
for i = 2 : 4 
    S(1, i)= 0; 
 for j = 2 : 4 

       if j >= i 
            S(1, i) = S(1, i) + r( j ) * S(i, j); 
        else 
            S(1, i)= S(1, i) + r(j)* S(j, i); 
       end 
 end 
 S(1, 1) = S(1, 1) + r(i) * S(1, i); 
end 
%------------------------------------------------------------------- 
% Step 5: Back Pivotation : 
%------------------------------------------------------------------- 
if  k ~= 1 
 for i = 2 : 4 
        if i < k 
             temp = S(1, i); 
            S(1, i) = S(i, k); 

           S(i, k) = temp; 
        end 

 if i > k 
            temp = S(1, i); 
            S(1, i) = S(i, k); 
            S(i, k) = temp; 
        end 
    end 
    temp = S(1, 1); 
    S(1, 1)= S(k, k); 
    S(k, k) = temp; 
end 
%------------------------------------------------------------------- 
% Lower triangular portion 
%------------------------------------------------------------------- 
for i = 1 : 4 
    for j = i : 4 

       S(j, i) = S(i, j); 
    end 
end 
 
%======================================== 
 
function S = inv3x3(S); 
 
% Using block diagonalization technique 
%------------------------------------------------------------------- 
% Step1: Diagonal Pivotation 
65



 

%------------------------------------------------------------------- 
max = S(1,1); 
k = 1; 
if S(2, 2) > max  

max = S(2, 2); 
    k = 2; 
end 
if S(3, 3) > max 

k = 3; 
end 
if k = = 2 
   temp = S(1, 1); S(1, 1) = S(2, 2); S(2, 2) = temp; 
   temp = S(1, 3); S(1, 3) = S(2, 3); S(2, 3) = temp; 
end    
if k = = 3 
   temp = S(1, 1); S(1, 1) = S(3, 3); S(3, 3) = temp; 
   temp = S(1, 2); S(1, 2) = S(2, 3); S(2, 3) = temp; 
end    
%------------------------------------------------------------------- 
% Step2: Block Diagonalization  
%------------------------------------------------------------------- 
S(1, 1) = 1 / S(1, 1); 
for i = 2:3 

r(i) = -S(1, i) * S(1, 1); 
for j = i:3 

S(i, j) = S(i, j) + r(i)* S(1, j); 
end 

end 
 
%------------------------------------------------------------------- 
% Step 3: 2x2 block inversion   
%------------------------------------------------------------------- 
% Determinant Compuation 
det = S(2, 2)* S(3, 3) - S(2, 3)* S(2, 3); 
if det < 1.0e-9  

fprintf ('WARNING: Matrix is ill-poised or 
badly scaled results might be erroneous'); 

end    
idet = 1/det; 
%Computation of inverse of 2x2 block 
temp = S(2, 2); 
S(2, 2) = S(3, 3) * idet; 
S(3, 3) = temp * idet; 
S(2, 3) = -S(2, 3)* idet; 
%------------------------------------------------------------------- 
% Step 4: reverse transformation:  
%------------------------------------------------------------------- 
for i = 2 : 3 

S(1, i)= 0; 
for j = 2 : 3 

if j >= i 
S(1, i)= S(1, i) + r(j)* S(i, j); 

else 
S(1, i)= S(1, i) + r(j)* S(j, i); 

end 
end 
S(1, 1) = S(1, 1) + r(i) * S(1, i); 
19
end 
%------------------------------------------------------------------- 
% Step5: Back Pivotation 
%------------------------------------------------------------------- 
if k == 2 
   temp = S(1, 1); S(1, 1) = S(2, 2); S(2, 2) = temp; 
   temp = S(1, 3); S(1, 3) = S(2, 3); S(2, 3) = temp; 
end    
if k = = 3 

temp = S(1, 1); S(1, 1) = S(3, 3); S(3, 3) = temp; 
temp = S(1, 2); S(1, 2) = S(2, 3); S(2, 3) = temp; 
end    

%------------------------------------------------------------------- 
 
% An Alternate function used to compute the inverse of 
%  3x3 symmetric block . 
function S = inv3x3(S); 
%------------------------------------------------------------------- 
% Adjoint Computation 
%------------------------------------------------------------------- 
b(1, 1) = S(2, 2)* S(3, 3) - S(2, 3)* S(2, 3); 
b(2, 2) = S(1, 1)* S(3, 3) - S(1, 3)* S(1, 3); 
b(3, 3) = S(1, 1)* S(2, 2) - S(1, 2)* S(1, 2); 
b(1, 2) = S(1, 3)* S(2, 3) - S(1, 2)* S(3, 3); 
b(1, 3) = S(1, 2)* S(2, 3) - S(1, 3)* S(2, 2); 
b(2, 3) = S(1, 2)* S(1 ,3) - S(1, 1)* S(2, 3); 
%------------------------------------------------------------------- 
% Determinant Computation 
%------------------------------------------------------------------- 
det = S(1, 1)* b(1, 1) + S(1, 2)* b(1, 2) + S(1, 3)* b(1, 3); 
if det < 1.0e-9  

fprintf ('WARNING: Matrix is may be ill-poised 
or badly scaled. Results might be erroneous'); 

end    
%------------------------------------------------------------------- 
% Computation of inverse of 3x3 block 
%------------------------------------------------------------------- 
idet = 1/det; 
for i = 1 : 3 
    for j = i : 3 
       S(i, j) = b(i, j) * idet; 
    end 
end 
%======================================= 
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