
An Efficient Algorithm to Compute the Inverse
of a Fourth Order Positive Definite Symmetric

Matrix

Prakash A. Kulkarni, K. N. Sudharshan
Accord Software & Systems Private Limited, Bangalore, India

BIOGRAPHY

Prakash. A. Kulkarni is a Senior Engineer at Accord
Software and Systems. He did his M.Tech from IIT,
Bombay, India in 1990 in Control System Engineering.
His areas of interest include GPS based navigation,
Differential Geometric Control Theory and Digital
Communication.

K. N. Sudharshan is a Systems Engineer at Accord
Software and Systems. He has a B.E in Electronics and
Communication. His areas of interest are algorithm
development and GPS based application development.

ABSTRACT

This paper presents an efficient and simple algorithm to
compute the inverse of a fourth order positive definite
symmetric matrix. In GPS related algorithms (whether
iterative or non-iterative), the computations of user
position or velocity require determination of the inverse
of such 4x4 symmetric matrices.

The standard Gaussian elimination technique based on LU
decomposition technique does not exploit the advantage
of matrix symmetry. The approach described here
involves a single step LDLT decomposition [Golub 1996]
to obtain a block diagonal matrix with two blocks. The
blocks will be of the size 1x1 and 3x3. The inverse of the
first block is obvious, where as the inverse of the second
block may be computed using the classical formula
Adj(G)/ det(G). Pivotation can be performed efficiently,
again by exploiting the symmetry. This algorithm requires
considerably lesser floating-point operations than the
standard algorithms.
ION GPS 2000, 19-22 September 2000, Salt Lake City, UT 19
INTRODUCTION

Fundamental to GPS based navigation are the pseudo-
range and delta-range equations [Kaplan, 1996]. Receiver
position, receiver velocity, receiver clock parameters
(clock bias and clock drift) are obtained by solving these
equations.

Let (x, y, z) denote the receiver position vector when it
receives the GPS signals from a satellite Sk. Let (xk, yk,
zk) denote the position vector of Sk at the instance of
signal broadcast, in the ECEF coordinate system [Kaplan]
Let b be the receiver clock bias. The pseudo-range ρρρρk
corresponding to the satellite Sk is given by

where, c is the velocity of light.

Similarly let (u, v, w) and (uk, vk, wk) denote the receiver
velocity vector and the velocity of Sk respectively
represented in ECEF coordinate system. Let d denote the
receiver clock drift rate. The pseudo-delta-range δρδρδρδρk are
given by

The input quantities to any navigation algorithm are the
pseudo-ranges, the pseudo-delta-ranges, the satellite
positions and the satellite velocities. The receiver
position, the receiver velocity, the clock bias and the
clock drift are the unknowns to be estimated. At least four
pseudo-range and pseudo-delta-range equations from
different satellites are required to determine these
unknowns.

bczzyyxx kkkk *)()()(222 +−+−+−=ρ �(1)

c*dz)] / rw)(z(w
y)v)(y(v
x)u)(x[(u

kkk

kk

kkk

+−−
+−−
+−−=δρ

� (2)
62

63
However, most of the GPS receivers, track more than four
satellites at a time, for better accuracy and reliability (e. g.
Receiver Autonomous Integrity Monitoring [Young,
1986] requires at least five satellite measurements).

Redundant satellite measurements give rise to an over
determined system of equations, where the number of
unknowns is less than the number of equations. In such a
situation, least square estimates are sought after. There
exist iterative techniques based on Newton-Raphson
method and also non-iterative techniques based on
Bancroft�s method [Strang, 1997] which are used to give
least square solutions. While attempting to obtain the least
square solution, by any of the above mentioned methods,
one comes across an over determined linear system of
equations of the form:

AX = b, (3)

where, A is n x 4 matrix with n > 4, X is 4 x 1 vector and
b is n x 1 vector.

The least square estimate of the above equation is given
by

X = S-1AT(b) (4)

where, S = AT A is 4 x 4 symmetric matrix. Often

the matrix A happens to be the Geometry Matrix G (i.e.,
Jacobean of the nonlinear pseudo-range equations 1).

The accuracy of the computed receiver position and
velocity depends on two factors: measurement accuracy
and satellite geometry. The various DOP values (Dilution
Of Precision) determine the extent of inaccuracy caused
by the satellite geometry in the receiver position and
velocity. These DOP values are obtained by computing
inverse of S=GTG.

Thus the computation of the inverse of such 4x4
symmetric positive definite matrices is necessary.

A standard practice to compute the inverse of a general
square matrix is the Gaussian elimination technique based
on LU [Golub, 1996] decomposition. However, when the
matrix is symmetric, computational effort will be much
less if LDLT [Golub, 1996] decomposition technique is
employed.

The approach presented in this paper, uses LDLT
technique and the classical formula of inverse

inv(M) = adj(M) / det(M) (5)

This approach results in an algorithm that uses
considerably less floating-point operations. Also
symmetry of the matrix is exploited to reduce data

19
memory requirement. A pivotation technique presented in
this paper requires only 3 swaps.

The mathematical details of the algorithm are explained in
the next section. In the appendix a MATLAB function
implementing the algorithm is presented.

ALGORITHM DESCRIPTION

 The algorithm is explained in this section. It involves five
steps. The algorithm is presented as a series of matrix
transformations to emphasize the theory. Implementation
details are presented in the appendix.

Consider Eq (3). Let S=AT A be represented by

The columns of A are assumed to be linearly independent
(this is the case when more than four distinct satellite
measurements are used).

With this assumption and from the fact that S=ATA, the
matrix S has the following properties

• S is symmetric and positive definite.
• The determinant of S is positive.
• All diagonal elements of S are positive.

Step1: Diagonal Pivotation

Diagonal pivotation is employed here to prevent division
by small numbers.

First, the largest diagonal member of S is identified. If Skk
is the largest diagonal element of matrix S, then swap 1st
row with kth row and 1st column with the kth column of
matrix S. The symmetry is preserved after these
operations. These operations can be represented as
multiplication with the permutation matrices. Let Pk
represent the permutation matrix that swaps kth row and
the 1st row.










=

0
0
1
0

2P

0
0
0
1

0
1
0
0










1
0
0
0










=

0
1
0
0

3P

0
0
1
0

0
0
0
1










1
0
0
0










=

1
0
0
0

4P

0
0
1
0

0
1
0
0










0
0
0
1

(7)










=

14

13

12

11

S
S
S
S

S

24

23

22

12

S
S
S
S

34

33

23

13

S
S
S
S










44

34

24

14

S
S
S
S

(6)

The resulting matrix R, is related to S as given below,

R = Pk S Pk
T (8)

Step2: Block Diagonalization by Gaussian Elimination
Technique

The matrix R defined in Eq no (8) is block diagonalized
by carrying out elementary row and column operations.
For this, consider the following lower triangular matrix L.

Here, rj = - Sj1 / S11, for j = 2,3 and 4.

Let B = LRLT (10)

Now the matrix B will be of the form

Step3: 3x3 Block Inversion

The above B matrix is a symmetric block diagonal matrix
of the form





=

T

b
B

0
1 1






2 2

0
B

(1 2)

where the block 0 is [0, 0, 0] and the block B22 is








=

24

23

22

22

b
b
b

B
34

33

23

b
b
b









44

34

24

b
b
b

(13)

Clearly the inverse of the block diagonal matrix is given
by





=−

T
b

B
0

/1 111 



−1

22

0

B
(14)

Here, the inverse of the 3x3 symmetric matrix B22 needs
to be computed. To compute B22

-1 one can use the










=

4

3

2

1

r
r
r

L

0
0
1
0

0
1
0
0










1
0
0
0

(9)










=

0
0
0

11b

B

24

23

22

0

b
b
b

34

33

23

0

b
b
b










44

34

24

0

b
b
b (11)
19
following classical formula while taking the advantage of
the symmetry of B22.

B22

-1 = adj (B22)/ det (B22) (15)

Instead of using Eq no (15), the inverse of B22 can be
computed by techniques explained in steps 2 and 3. The
matrix B22 can be block diagonalized into 1x1 and 2x2
matrices and then the Eq no 15 can be used to find the
inverse of 2x2-block matrix. By doing this one can save
several floating-point multiplication operations at the cost
of one extra division.

Step4: Reverse Transformation

This step finds R-1 from B-1.
From Eq no (10) i.e., B = L R LT.

 R-1 = LT B-1 L

Step 5: Back Pivotation

From eq no (8) i.e., R = Pk S Pk

T.

 S-1 = Pk

T R-1 Pk

The above steps of finding the inverse of S can be
summarized by the equation given below

S-1= Pk

T LT B-1 L -1 Pk

CONCLUSION

Comparison of computation of inverse of a 4x4
symmetrical matrix, based on general inverse routines and
the algorithm described here is given below.

Existing
Methods
(Typical)

Proposed
Methods

(Implemented in
the appendix)

METHODS

FLOP TYPE U
si

ng

LU

de
co

m
po

si
tio

n.

U
si

ng

LD
L�

 o
nl

y

A
dj

/d
et

ap

pl
ie

d
fo

r
3x

3
bl

oc
k

A
dj

/d
et

ap

pl
ie

d
fo

r
2x

2
bl

oc
k

Addition 38 40 20 27
Subtraction 24 - 6 1
Multiplication 84 52 42 37
Division 4 4 2 3
Total 150 96 70 68

The algorithm is implemented on Analog Devices
ADSP2189M fixed point processor. The input data to the
processor is in IEEE floating-point format. A chart
indicating the number of processor cycles, total number of
64

program memory words and data memory words is given
below.

Processor
Cycles

Program
Memory Words

Data Memory
Words

23,782 407 125

APPENDIX

%==
% IMPLEMENTATION OF THE ALGORITHM AS A
% MATLAB FUNCTION
%==
function S = sym4inv (S);
% Step1: Diagonal Pivotation
max = S(1, 1);
for j = 2 : 4
 k = 1;
 temp = S(j, j);
 if temp > max
 max = temp;
 k = j;
 end
end

if max < 1.0e-9

fprintf ('WARNING:Division by small number);
end
if k ~= 1

for i = 2 : 4
 if i < k
 temp = S(1, i);
 S(1, i) = S(i, k);

 S(i, k) = temp;
 end

 if i > k
 temp = S(1, i);
 S(1, i)= S(i, k);

 S(i, k) = temp;
 end
 end
 temp = S(1, 1);
 S(1, 1) = S(k, k);
 S(k, k) = temp;
end
%---
% Step 2: Block Diagonalization by Gaussian Elimination
% Technique.
%---
S (1, 1) = 1 / S(1, 1);
for i = 2 : 4
 r(i) = -S(1, i) * S(1, 1);
 for j = i : 4
 S(i, j) = S(i, j) + r(i)* S(1, j);
 end
end
%---
19
% Step3: 3x3 Block Inversion
%--
b(1, 1) = S(2, 2); b(2, 2) = S(3, 3); b(3, 3) = S(4, 4);
b(1, 2) = S(2, 3); b(1, 3) = S(2, 4); b(2, 3) = S(3, 4);
b = inv3x3(b);
S(2, 2) = b(1, 1); S(3, 3) = b(2, 2); S(4, 4) = b(3, 3);
S(2, 3) = b(1, 2); S(2, 4) = b(1, 3); S(3, 4) = b(2, 3);
%---
% Step 4: Reverse Transformation:
%---
for i = 2 : 4
 S(1, i)= 0;
 for j = 2 : 4

 if j >= i
 S(1, i) = S(1, i) + r(j) * S(i, j);
 else
 S(1, i)= S(1, i) + r(j)* S(j, i);
 end
 end
 S(1, 1) = S(1, 1) + r(i) * S(1, i);
end
%---
% Step 5: Back Pivotation :
%---
if k ~= 1
 for i = 2 : 4
 if i < k
 temp = S(1, i);
 S(1, i) = S(i, k);

 S(i, k) = temp;
 end

 if i > k
 temp = S(1, i);
 S(1, i) = S(i, k);
 S(i, k) = temp;
 end
 end
 temp = S(1, 1);
 S(1, 1)= S(k, k);
 S(k, k) = temp;
end
%---
% Lower triangular portion
%---
for i = 1 : 4
 for j = i : 4

 S(j, i) = S(i, j);
 end
end

%==

function S = inv3x3(S);

% Using block diagonalization technique
%---
% Step1: Diagonal Pivotation
65

%---
max = S(1,1);
k = 1;
if S(2, 2) > max

max = S(2, 2);
 k = 2;
end
if S(3, 3) > max

k = 3;
end
if k = = 2
 temp = S(1, 1); S(1, 1) = S(2, 2); S(2, 2) = temp;
 temp = S(1, 3); S(1, 3) = S(2, 3); S(2, 3) = temp;
end
if k = = 3
 temp = S(1, 1); S(1, 1) = S(3, 3); S(3, 3) = temp;
 temp = S(1, 2); S(1, 2) = S(2, 3); S(2, 3) = temp;
end
%---
% Step2: Block Diagonalization
%---
S(1, 1) = 1 / S(1, 1);
for i = 2:3

r(i) = -S(1, i) * S(1, 1);
for j = i:3

S(i, j) = S(i, j) + r(i)* S(1, j);
end

end

%---
% Step 3: 2x2 block inversion
%---
% Determinant Compuation
det = S(2, 2)* S(3, 3) - S(2, 3)* S(2, 3);
if det < 1.0e-9

fprintf ('WARNING: Matrix is ill-poised or
badly scaled results might be erroneous');

end
idet = 1/det;
%Computation of inverse of 2x2 block
temp = S(2, 2);
S(2, 2) = S(3, 3) * idet;
S(3, 3) = temp * idet;
S(2, 3) = -S(2, 3)* idet;
%---
% Step 4: reverse transformation:
%---
for i = 2 : 3

S(1, i)= 0;
for j = 2 : 3

if j >= i
S(1, i)= S(1, i) + r(j)* S(i, j);

else
S(1, i)= S(1, i) + r(j)* S(j, i);

end
end
S(1, 1) = S(1, 1) + r(i) * S(1, i);
19
end
%---
% Step5: Back Pivotation
%---
if k == 2
 temp = S(1, 1); S(1, 1) = S(2, 2); S(2, 2) = temp;
 temp = S(1, 3); S(1, 3) = S(2, 3); S(2, 3) = temp;
end
if k = = 3

temp = S(1, 1); S(1, 1) = S(3, 3); S(3, 3) = temp;
temp = S(1, 2); S(1, 2) = S(2, 3); S(2, 3) = temp;
end

%---

% An Alternate function used to compute the inverse of
% 3x3 symmetric block .
function S = inv3x3(S);
%---
% Adjoint Computation
%---
b(1, 1) = S(2, 2)* S(3, 3) - S(2, 3)* S(2, 3);
b(2, 2) = S(1, 1)* S(3, 3) - S(1, 3)* S(1, 3);
b(3, 3) = S(1, 1)* S(2, 2) - S(1, 2)* S(1, 2);
b(1, 2) = S(1, 3)* S(2, 3) - S(1, 2)* S(3, 3);
b(1, 3) = S(1, 2)* S(2, 3) - S(1, 3)* S(2, 2);
b(2, 3) = S(1, 2)* S(1 ,3) - S(1, 1)* S(2, 3);
%---
% Determinant Computation
%---
det = S(1, 1)* b(1, 1) + S(1, 2)* b(1, 2) + S(1, 3)* b(1, 3);
if det < 1.0e-9

fprintf ('WARNING: Matrix is may be ill-poised
or badly scaled. Results might be erroneous');

end
%---
% Computation of inverse of 3x3 block
%---
idet = 1/det;
for i = 1 : 3
 for j = i : 3
 S(i, j) = b(i, j) * idet;
 end
end
%=======================================

66

REFERENCES

Golub H.G and Charles F. Van Loan (1996),�Matrix
Computations�, The Johns Hopkins University Press,
Baltimore, Maryland, pp 94-206

Elliott D. Kaplan (1996), �Understanding GPS: Principles
and Applications�, Artech House, Inc. 685,Canton Street,
Norwood, MA 02062

Young C. Lee (1986), �Analysis of Range and Position
Comparison Methods as a Means to Provide GPS
Integrity in the User Receiver�, Global Positioning
System Vol. 5, Institute of Navigation, Alexandria VA, pp
5-19

Gilbert Strang and Kai Borre (1997), �Linear Algebra,
Geodesy and GPS�, Wellesley-Cambridge Press, Box
812060, Wellesley MA 02181 USA

1967

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

